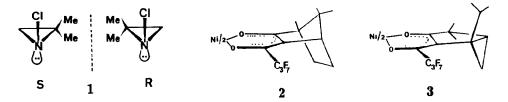
0957-4166/90 \$3.00+.00 Pergamon Press plc

Semi-preparative Enantiomer Separation of 1-Chloro-2,2-dimethylaziridine by Complexation Gas Chromatography -Absolute Configuration and Barrier of Inversion

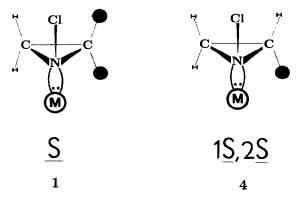

Volker Schurig * and Ulrich Leyrer¹

Institut für Organische Chemie der Universität, Auf der Morgenstelle 18, D-7400 Tübingen, FRG

(Received 13 November 1990)

Summary. 1-Chloro-2.2-dimethyl-aziridine has been resolved into its enantiomerically pure invertomers by semi-preparative complexation gas chromatography at 25°C. The absolute configuration has been correlated with the chromatographic elution order. An inversion barrier of $\Delta G^{\dagger} = 115.5$ kJ/mol was determined in the gas phase at 338.6 K.

In 1-chloro-2,2-dimethylaziridine 1 the three-coordinated, pyramidal nitrogen constitutes the chiral center as well as a potential coordination center. Consequently, the gas chromatographic enantiomer separation of 1 on nickel(II) bis[(3-heptafluorobutanoyl)-(lR)-camphorate] 2 in squalane leads to the large separation factor of $\alpha = 1.5$ at 60°C (corresponding to a difference of the free association enthalpy between the invertomers of 1 and lR-2 of $-\Delta(\Delta G^{\circ}) = 1.2 \text{ kJ/mol} (333 \text{K}))^{2.3}$.


The inversion of configuration of 1 during its chromatographic enantiomer separation gives rise to characteristic interconversion profiles (observed for the first time for labile enantiomers by chiral chromatography ³) from which kinetic activation data of enantiomerization are readily accessible by peak form analysis (dynamic gas chromatography ⁴). In order to refine the mathematical treatment used ⁴ the knowledge of the inversion barrier of 1 in the gas phase is indispensable.

V. SCHURIG and U. LEYRER

Employing an analytical 7.5 m x 3 mm (i.d.) stainless steel column containing 250 mg 2 in 6.25 g OV-101 impregnated on 43 g Chromosorb (W-AW-DMCS, 60-80 mesh) ^{5.6}, the pure invertomers of 1 have been separated and isolated in mg-quantities (Fig. 1). The high enantiometric purity of the invertomers was corroborated by complexation gas chromatography employing an analytical column (Fig. 2). It should be noted that both the semi-preparative and the analytical separation of the labile invertomers of 1 can be achieved at room temperature.

The amount of isolated enantiomerically pure invertomers (appr. 2 mg) was sufficient for the determination of chiroptical data in n-pentane and of measuring the enantiomerization kinetics in the gas phase employing an analytical column for screening ee by complexation gas chromatography (cf. Fig. 3, racemization at 82°C). The lowest rate of inversion of 1 in the gas phase at 338.6 K (65.3°C, boiling methanol) found was $k = 6.9 \quad 10^{-6} \sec^{-1}$, $t_{1/2} = 842 \min$, $\Delta G^{\ddagger} = 116.7 \text{ kJ/mol}$ (mean value for ΔG^{\ddagger} in four measurements at $T = 338.6 \pm 0.3 \text{ K}$: $115.5 \pm 1.2 \text{ kJ/mol}$)^{7,8}.

The invertomer of 1, eluted as the second fraction on nickel(II) bis[(3-heptafluorobutanoyl)-(lR) - camphorate] (1R)-2, shows a positive optical rotation at all wavelengthes and a positive Cotton effect at 217 and 260 nm in n-pentane. By indirect evidence we previously assigned configuration S to the invertomer of 1 eluting as the second peak on (1R)-2 because (1S,2S)-1-chloro-2-methyl-aziridine 4³, which differs from 1 only by the absence of a methyl group in anti-position to the coordinating nitrogen lone pair, is also eluted as the second peak ³.

This assignment is in contradiction to that given by Kostyanovsky et al. ¹⁰ and others ¹¹, based on the octant rule, but is in agreement with that proposed by Snatzke ¹² and with the recent correction of the misassignment by Kostyanovsky et al. ¹³. Thus, by gas chromatographic and chiroptic evidence the absolute configuration of (+)-1-chloro-2,2-dimethylaziridine **1** is S.

Figure 1: Semi-preparative separation of the invertomers of 1 by complexation gas chromatography on nickel(II) bis[(3-heptafluorobutanoyl)-(lR)-camphorate] 2 at 22°C (S is eluted after R on (lR)-2). Column: 7.5 m x 0.3 cm stainless steel, packed with 250 mg 2 in 6.25 g OV-101 impregnated on 43 g Chromosorb (W-AW-DMCS, 60-80 mesh). Carrier gas: 1.5 bar nitrogen. Injected amount of 1: 6 μ l. Analysis time: 3 h. R

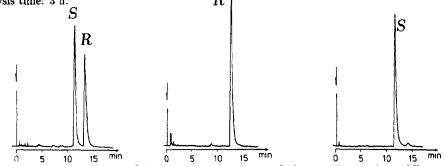


Figure 2: Enantiomeric purity of the isolated invertomers 1. Left: racemic sample; middle: pure R-1; right: S-1 (contaminated with appr. 1% R-1 originating from uncomplete cutting of the preparative fractions (cf. Fig. 1). Analytical column: 25 m 0.25 mm glass capillary column coated with nickel(II)bis-[(2-heptafluorobutanoyl)-(15,55)-4-methylthujonate] 3^{14} (0.125 m in OV-101, 50°C (R is eluted after S on (15,55)-3).

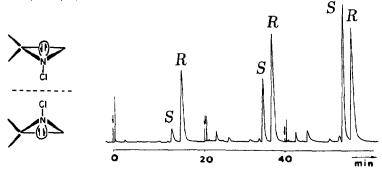


Figure 3: Rapid racemization of R-1 at 82°C monitored by complexation gas chromatography (conditions cf. Fig. 2).

Acknowledgment

This work was supported by "Deutsche Forschungsgemeinschaft" und "Fonds der chemischen Industrie". We thank Professor G. Snatzke (Bochum) and Professor A. Mannschreck (Regensburg) for valuable discussions.

References and Notes

- 1 Present address: Bayer AG, Bayerwerk, D-5090 Leverkusen.
- 2 V. Schurig, W. Bürkle, A. Zlatkis and C. F. Poole, Naturwissenschaften 66 (1979) 423.
- 3 V. Schurig and W. Bürkle, J. Amer. Chem. Soc. 104 (1982) 7573.
- 4 W Bürkle, H. Karfunkel and V. Schurig, J Chromatogr. 288 (1984) 1.
- 5 V. Schurig, Deutsche Offenlegungsschrift DE 3410801 A1 of 10. 10. 1985.
- 6 V. Schurig, Naturwissenschaften 74 (1987) 190.

7 Calculated according to 2t $k = ln(ee_{(o)}/ee_{(t)})$ using the program KINMIK (A. Eiglsperger, Dissertation, Universität Regensburg, 1985, p. 76).

By dynamic ¹H-NMR spectroscopy the free enthalpy of inversion of **1** has been estimated > ΔG^{\ddagger} = 98.4 kJ/mol at 180°C since no coalescence of the diastereotopic methyl proton resonances were observed at this temperature ⁹. From the *dynamic* chromatographic coalescence phenomenon caused by inversion of **1** during gas-chromatographic enantiomer separation on **2**, k = 23.5 \cdot 10⁻⁵sec⁻¹ and ΔG^{\ddagger} = 105.1 kJ/mol has been determined by peakform analysis ⁴ In this treatment, a decrease of the barrier of inversion of **1** being different for the two invertomers in the presence of chiral **2**, has been inferred and, consequently, ΔG^{\ddagger} also represents a lower limit. An optically enriched sample of **1** (ee < 5%) ^{10.11} showed a half-time of inversion t_{1/2} = 45 min (80°C, CCl₄). According to t_{1/2} = ln2/2k and ΔG^{\ddagger} = 4.57 T(10.32 + log(T/k), $\Delta G^{\ddagger}_{353}$ = 113 2 kJ/mol is calculated.

- 9 J. M. Lehn and J. Wagner, J. Chem. Soc., Chem. Commun. (1968) 148.
- 10 R. G. Kostyanovsky, Z. E. Samojlova and I. I. Tchervin, Tetrahedr. Lett. (1969) 719.
- 11 M. Bucciarelli, A. Forni, I. Moretti and G. Torre, J. Org. Chem. 48 (1983) 2640.
- 12 G. Snatzke, personal communication.

14 V. Schurig, W. Bürkle, K. Hintzer and R. Weber, J. Chromatogr. 475 (1989) 23.

¹³ G. V. Shustov, G. K. Kadorkina, R. G. Kostyanovsky and A. Rauk, J. Amer. Chem. Soc. 110 (1988) 1719.